TCET/FRM/IP-02/09 Zagdu Singh Charitable "Trust's (Regd.) # THAKUR COLLEGE OF **ENGINEERING & TECHNOLOGY** (Approved by AICTE, Govt. of Maharashtra & Affiliated to University of Mumbai*) (Accredited Programmes by National Board of Accreditation, New Delhi**) A - Block, Thakur Educational Campus, Shyamnarayan Thakur Marg, Thakur Village, Kandivali (East), Mumbai - 400 101. Tel.: 6730 8000 / 8106 / 8107 Fax: 2846 1890 Email: tcet@thakureducation.org Website : www.tcetmumbai.in • www.thakureducation.org Revision: A *Permanent Affiliated UG Programmes: *Computer Engineering *Electronics & Telecommunication Engineering * Information Technology (w.e.f.: A.Y. 2015-16 onwards) **1st time Accredited UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology **2nd time Accredited UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology • Electronics Engineering (3 years w.e.f.: 01-07-2016) # **Semester Plan** (Theory) Semester: III Course: EXTC Subject: Electronic Devices and Circuits-I Class: SE- A | Sr. No. | Bridge courses/Technology | Duration
(Week/hrs) | Modes of
Learning | Recommended Sources | |---------|---|------------------------|--|---| | 1. | Prerequisite course: Basics of semiconductors:Insulators,Conductors,Semi conductros,ntype,ptype,pn junction ,forward and reverse bias | 4 hrs | Self
learning
and
classroom
revision | 1.D. A. Neamen, "Electronic Circuit Analysis and Design," Tata McGraw Hill, 2ndEdition. 2.A. Mottershead, "Electronic Devices and Circuits; An Introduction," | # Class Room Teaching | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remarks | |-----------|---------------|---------------|---|------------------------------|---------------------------------|-------------------------------|---------| | 1 | | L1.1 | SOP | LCD | 10/07/17 | | | | | | | | Projector | | | | | 2 | | L1.2 | EDC-I (Lab) | LCD | 11/07/17 | | | | | | LIL | EDO I (Lab) | Projector | | | | | 3 | | L1.3 | OBE | LCD | 12/07/17 | | | | 3 | | LI.3 | ODE | Projector | | | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remarks | |-----------|---------------|---------------|---|-----------------------------------|---------------------------------|-------------------------------|---------| | 4 | 1 | L1.4 | Diode and Material science: Study of various types of resistor, capacitor and inductors | LCD
Projector
&
Graphics | 13/07/17 | M1.7.1 | | | 5 | 1 | L1.5 | Basic fabrication steps of passive | LCD | 14/07/17 | M1.7.2 | | | | ' | 21.0 | elements. | Projector | | 1411.7.2 | | | 6 | 1 | L2.1 | PN junction Diode characteristics, small signal model | LCD
Projector
& | 17/07/17 | M1.7.3 | | | | | | Ţ | Black
Board | | | | | 7 | 2 | L2.2 | Rectifiers, Filters and Regulators: | LCD
Projector
& | 18/07/17 | M2.7.1 | | | | _ | | Analysis of half wave and full wave rectifiers | Simulation
s | | 1412.7.1 | | | 8 | 2 | L2.3 | Analysis of rectifiers with L, | LCD | 19/07/17 | M2.7.2 | | | | _ | | LC, C filters and design problems | Projector | | 1/12.7,12 | | | 9 | 2 | L2.4 | Analysis of rectifiers with CLC, | LCD | 20/07/17 | M2.7.3 | | | | | | CRC filters and design problems | Projector | | 1412.7.3 | | | 10 | 2 | L2.5 | Concept of load and line regulation in power supply | LCD
Projector
& | 21/07/17 | M2.7.4 | | | | - | | circuits. | Black
Board | | 1,12.7.1 | | | 11 | 2 | L3.1 | Analysis of zener voltage | LCD | 24/07/17 | M2.7.5 | | | | _ | | regulator | Projector | | | | | 12 | 2 | L3.2 | Design of zener voltage regulator | LCD | 25/07/17 | M2.7.6 | | | | _ | | 22-0 2- 2-0 22 | Projector | | | | | 13 | 2 | L3.3 | Design problems based on | LCD | 27/07/17 | M2.8 | | | | _ | | rectifier filter. | Projector | | | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remarks | |-----------|---------------|---------------|--|---|---------------------------------|-------------------------------|---------| | 14 | 3 | L3.4 | Transistor Biasing and Design: Operation of BJT, BJT characteristics, DC/AC load line. | LCD
Projector
&
Black
Board | 28/07/17 | M3.7.1 | | | 15 | 3 | L4.1 | DC analysis and design of fixed bias, collector to base bias, | LCD
Projector
& | 31/07/17 | M3.7.2 | | | 15 | 3 | L4.1 | stability factor analysis. | Black
Board | | W15.7.2 | | | 16 | 3 | L4.4 | BJT voltage divider bias, stability | LCD
Projector
& | 01/08/17 | M3.7.3 | | | | ŭ | L-1T | factor analysis. | Black
Board | | 1413.7.3 | | | | 3 | L4.3 | Numerical based on biasing | LCD
Projector
& | 03/08/17 | M3.7.4 | | | 17 | J | 20 | circuits. | Black
Board | | | | | 18 | 3 | L4.4 | FET (N-CHANNEL, P-CHANNEL) with characteristics | LCD
Projector
& | 04/08/17 | - M3.7.5 | | | | | | and equation | Black
Board | | | | | 19 | 3 | L5.1 | Analysis and design of self- bias | LCD
Projector
& | 07/08/17 | M3.7.6 | | | | | | and voltage divider bias | Black
Board | | | | | 20 | 3 | L5.2 | FET zero temp drift biasing and | LCD
Projector
& | 08/08/17 | M3.7.7 | | | | | | numerical based on FET biasing | Black
Board | | | | | 21 | 3 | L5.3 | Numerical based on biasing Projector | LCD
Projector
& | 10/08/17 | - M3.7.8 | | | | | | circuits of BJTand FET | Black
Board | | | | | 22 | | L5.4 | Term test preparation with | - | 11/08/17 | M1-M3 | | | | | | practice session. | | | | | | 23 | 4 | L6.1 | Transistor modelling and Small signal analysis of amplifier: Hybrid and Hybrid pi model of | LCD
Projector
& | 14/08/17 | M4.7.1 | | | | | | BJT with graphical representations. | Black
Board | | | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remarks | |-----------|---------------|--------------------------|---|------------------------------|---------------------------------|-------------------------------|---------| | 24 | 4 | L6.2 | Small signal analysis (Zi, Zo, Av and Ai) of CE amplifier | LCD Projector & Black Board | 18/08/17 | M4.7.2 | | | 25 | 4 | L7.1 | Numerical based on CE | LCD
Projector | 24/08/17 | M4.7.3 | | | 25 | 7 | L7.1 | amplifier analysis. | Black
Board | | WI4.7.3 | | | 26 | 4 | L8.1 | Small signal analysis (Zi, Zo, Av and Ai) of CC,CB amplifier and | LCD
Projector
& | 31/08/17 | M4.7.4 | | | | | | numerical. | Black
Board | | | | | 27 | 4 | L8.2 | Small signal model of FET with | LCD
Projector
& | 01/09/17 | M4.7.5 | | | | | | graphical representation. | Black
Board | | | | | 28 | 4 | L9.1 | small signal (mid-frequency) | LCD
Projector
& | 04/09/17 | M4.7.6 | | | 20 | 7 | L3.1 | analysis of CS using FET | Black
Board | | | | | 29 | 4 | L9.2 | Small signal (mid-frequency) | LCD
Projector
& | 05/09/17 | M4.7.7 | | | 20 | | 20.2 | analysis of CD,CG using FET | Black
Board | | 1411.7.7 | | | 30 | 4 | L9.3 | Numerical based on FET | LCD
Projector
& | 07/09/17 | M4.8 | | | | | | amplifier | Black
Board | | 5.2.30 | | | | _ | | High frequency response of BJT and FET amplifiers: High frequency hybrid-pi | LCD
Projector | 08/09/17 | 15.7.1 | | | 31 | 5 | L9.4 | equivalent Circuits of BJT and FET | &
Black
Board | | M5.7.1 | | | 20 | F | Miller effect and Miller | LCD
Projector | 11/09/17 | | | | | 32 | 5 | L10.1 | capacitance, gain bandwidth product | &
Black
Board | | M5.7.2 | | | 33 | 5 | L10.2 | Effects of capacitors on frequency response of single | LCD
Projector
& | 12/09/17 | M5.7.3 | | | 33 | 5 | L10.2 | stage amplifier using BJT | Black
Board | | 1413.7.3 | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | Remarks | |-----------|---------------|---------------|--|---|---------------------------------|-------------------------------|---------| | 34 | 5 | L10.3 | Effects of capacitors on frequency response of single stage amplifier using FET | LCD
Projector
&
Black
Board | 14/09/17 | M5.7.4 | | | 35 | 5 | L10.4 | Analysis of single stage amplifiers at HF and gain | LCD
Projector
& | 15/09/17 | M5.7.5 | | | | | | bandwidth product. | Black
Board | | | | | 36 | 6 | L11.1 | Design of Small signal Amplifiers: Design of single stage RC Coupled CE amplifier. (USE of | LCD
Projector
& | 18/09/17 | M6.7.1 | | | | | | parameters from data sheet compulsory) | Black
Board | | | | | 37 | 6 | L11.2 | Design of single stage RC Coupled CE amplifier. (USE of parameters from data sheet | LCD
Projector
& | 19/09/17 | M6.7.1 | | | | | | compulsory) | Black
Board | | 1410.7.1 | | | 38 | 6 | L11.3 | Design of single stage RC
Coupled CS amplifier. (USE of | LCD
Projector
& | 21/09/17 | M6.7.2 | | | | | 211.0 | parameters from data sheet compulsory) | parameters from data sheet Black | | 1,10.7.2 | | | 39 | 6 | L11.4 | Design of single stage RC
Coupled CS amplifier. (USE of | LCD
Projector
& | 22/09/17 | M6.7.2 | | | | - | | parameters from data sheet compulsory) | Black
Board | | 1,101,12 | | | 40 | 6 | L12.1 | Design of single stage RC
Coupled CS amplifier. (USE of | LCD
Projector
& | 25/09/17 | M6.7.2 | | | 10 | | 212.1 | parameters from data sheet compulsory) | Black
Board | | 1410.7.2 | | | 41 | - | L12.2 | Design Problems | Black
Board | 26/09/17 | M6.8 | | | | | | | Doard | | | | | 40 | 40 | 1404 | Practise problems: | Black | 03/10/17 | MO O MO O | | | 42 | 2-6 | L13.1 | Problem solving based on BJT circuits | Board | | M3.8-M6.8 | | | 43 | 2-6 | L13.2 | Problem solving based on FET | Black | 05/10/17 | M3.8-M6.8 | | | .5 | 2 5 | 210.2 | circuits | Board | | | | | | | | | | | | Remarks | |-----------|--|--------------------|--|------------------------------|---------------------------------|-------------------------------|---------| | Sr.
No | Module
No. | Lesson
No. | Topics Planned (Technology to be used) | Teaching
Aids
Required | Planned
/Completi
on Date | Resource
Book
Reference | | | | | | | | | | | | 44 | | L13.3 | Term test preparation with | Black | 06/10/17 | M4-M6 | | | 44 | - | L13.3 | practice session | Board | | 1014-1010 | | | 45 | 2 | L14.1 | Problem solving based on | Black | 12/10/17 | M2.8 | | | 45 | 2 | L14.1 | rectifier and filter circuits | Board | | IVIZ.O | | | 46 | | L14.2 | University paper doubt solving. | | 13/10/17 | University
Paper | | | Re | l
emark:: | Syllabus Coverage: | | Practice Session: | | Beyond Sylla | bus: | | Course: | | | | | | | | | | No. of (lectures planned)/(lecture taken): | | | | | | | No. of (lectures planned)/(lecture taken): (45) **Bridge courses Objective:** Bridging of gaps with respect to prerequisites and industry skills or to carryout research in signal processing field. (20 Hrs / Semester / student) | Sr . No. | Bridge courses/Technology | Duration
(Week/hrs) | Modes of
Learning | Recommended Sources | |----------|--|------------------------|----------------------------------|---| | 1 | Advanced course: Analog Circuits and Systems through SPICE Simulation (NPTEL Course) | 12 week | Technolo
gy Based
learning | https://onlinecourses.n
ptel.ac.in/noc17_ec15/
2. Mircoelectronic
Circuits, Sedra and
Smith
2) Design of Analog
CMOS Integrated
Circuits, Behzad
Razavi | ### **Text Books:** - 1) Donald A. Neamen, Electronic Circuit Analysis and Design, Tata McGraw Hill, 2nd Edition - 2) Adel S. Sedra, Kenneth C. Smith and Arun N Chandorkar, Microelectronic Circuits ,Sixth Edition - 3) R.S Dudhe and M. Farhan, ", "Electronic Devices and Circuits", Synergy Knowledgeware, 1st Edition, 2013. Operational Amplifier designing & Applications #### **Reference Books:** - 1) Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata McGraw Hill, 3rd Edition - 2) Jacob Millman, Christos C Halkias, and Satyabratatajit, "Millman's Electronic Devices and Circuits", McGrawHill, 3rd Edition - 3) Muhammad H. Rashid, "Microelectronics Circuits Analysis and Design", CengageLearning, 2nd Edition ## **Digital Reference:** - Wikipedia - Google - http://www.mkp.com - http://sensin.unLedu/idc/index.html SD SD SD Name & Signature of Faculty Signature of HOD Signature of Principal /Dean (Academics) Date: Date: Date: #### Note: 1. Plan date and completion date should be in compliance - 2. Courses are required to be taught with emphasis on resource book, course file, text books, reference books, digital references etc. - 3. Planning is to be done for 15 weeks where 1st week will be AOP, 2nd -13th for effective teaching and 14th -15th week for effective university examination oriented teaching, mock practice session and semester consolidation. - 4. According to university syllabus where lecture of 4 hrs/per week is mentioned minimum 55 hrs and in case of 3 lectures per week minimum 45 lectures are to be engaged are required to be engaged during the semester and therefore accordingly semester planning for delivery of theory lectures shall be planned. - 5. In order to improve score in NBA, faculty members are also required to focus course teaching beyond university prescribed syllabus and measuring the outcomes w.r.t learning course and programme objectives. - 6. Text books and reference books are available in syllabus. Here only additional references w.r.t. non –digital/ digital sources can be written (if applicable) - 7. Technology to be used in class room during lecture shall be written below the topic planned within the bracket.